RESISTOR COLOR CODE
Some resistors have their value clearly stated on them in microscopic print that you can read with a magnifying glass. Most, however, are color-coded with stripes. The code works like this: first, ignore the color of the body of the resis- tor. Second, look for a silver or gold stripe. If you find it, turn the resistor so that the stripe is on the righthand side. Silver means that the value of the resistor is accurate within 10%, while gold means that the value is accurate within 5%. If you don’t find a silver or gold stripe, turn the resistor so that the stripes are clustered at the left end. You should now find yourself looking at three colored stripes on the left.
Note that the color-coding is consistent, so that green, for instance, means either a value of 5 (for the first two stripes) or 5 zeros (for the third stripe). Also, the sequence of colors is the same as their sequence in a rainbow. So, a resistor colored brown-red-green would have a value of 1-2 and five zeros, making 1,200,000 ohms, or 1.2MΩ. A resistor colored orange-orange-orange would have a value of 3-3 and three zeros, making 33,000 ohms, or 33KΩ. A resistor colored brown-black-red would have a value of 1-0 and two additional zeros, or 1KΩ.
If you run across a resistor with four stripes instead of three, the first three stripes are digits and the fourth stripe is the number of zeros. The third numeric stripe allows the resistor to be calibrated to a finer tolerance. Confusing? Absolutely. That’s why it’s easier to use your meter to check the values. Just be aware that the meter reading may be slightly different from the claimed value of the resistor. This can happen because your meter isn’t absolutely accu- rate, or because the resistor is not absolutely accurate, or both. As long as you’re within 5% of the claimed value, it doesn’t matter for our purposes.
|
No comments:
Post a Comment